Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(14): 5311-5318, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577371

RESUMO

Host-mediated liquid-liquid extraction is a convenient method for the separation of inorganic salts. However, selective extraction of an anion, regardless of its hydrophilicity or lipophilicity as qualitatively described by its place in the Hofmeister series, remains challenging. Herein we report the complete disruption of the Hofmeister-based ordering of anions in host-mediated extraction by a rigidified tweezer-type receptor possessing remarkably strong anion-binding affinity under the conditions examined. Experiments introduce a convenient new method for determination of anion binding using phosphorus inductively coupled plasma mass spectrometry (ICP-MS) to measure extraction of tetra-n-butylphosphonium (TBP+) salts from water into nitrobenzene, specifically examining the disrupting effect of the added arylethynyl bisurea anion receptor. In the absence of the receptor, the salt partitioning follows the expected Hofmeister-type ordering favoring the larger, less hydrated anions; the analysis yields the value -24 kJ mol-1 for the standard Gibbs energy of partitioning of TBP+ cation from water into nitrobenzene at 25 °C. Selectivity is markedly changed by the addition of receptor to the nitrobenzene and is concentration dependent, giving rise to three selectivity regimes. We then used SXLSQI liquid-liquid equilibrium analysis software developed at Oak Ridge National Laboratory to fit host-mediated extraction equilibria for TBP+ salts of Cl-, Br-, I-, and NO3- to the distribution data. While the reverse-Hofmeister 1 : 1 binding of the anions by the receptor effectively cancels the Hofmeister selectivity of the TBPX partitioning into nitrobenzene, formation of unexpected 2 : 1 receptor : anion complexes favoring Cl- and Br- dominates the selectivity at elevated receptor concentrations, producing the unusual order Br- > Cl- > NO3- > I- in anion distribution wherein a middle member of the series is selected and the most lipophilic anion is disfavored. Density functional theory calculations confirmed the likelihood of forming 2 : 1 complexes, where Cl- and Br- are encapsulated by two receptors adopting energetically competitive single or double helix structures. The calculations explain the rare non-Hofmeister preference for Br-. This example shows that anion receptors can be used to control the selectivity and efficiency of salt extraction regardless of the position of the anion in the Hofmeister series.

2.
ACS Appl Mater Interfaces ; 15(50): 58984-58993, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051915

RESUMO

Aluminum hydroxide, an abundant mineral found in nature, exists in four polymorphs: gibbsite, bayerite, nordstrandite, and doyleite. Among these polymorphs gibbsite, bayerite, and commercially synthesized amorphous aluminum hydroxide have been investigated as sorbent materials for lithium extraction from sulfate solutions. The amorphous form of Al(OH)3 exhibits a reactivity higher than that of the naturally occurring crystalline polymorphs in terms of extracting Li+ ions. This study employed high-temperature oxide melt solution calorimetry to explore the energetics of the sorbent polymorphs. The enthalpic stability order was measured to be gibbsite > bayerite > amorphous Al(OH)3. The least stable form, amorphous Al(OH)3, undergoes a spontaneous reaction with lithium, resulting in the formation of a stable layered double hydroxide phase. Consequently, amorphous Al(OH)3 shows promise as a sorbent material for selectively extracting lithium from clay mineral leachate solutions. This research demonstrates the selective direct extraction of Li+ ions using amorphous aluminum hydroxide through a liquid-solid lithiation reaction, followed by acid-free delithiation and relithiation processes, achieving an extraction efficiency of 86%, and the maximum capacity was 37.86 mg·g-1 in a single step during lithiation. With high selectivity during lithiation and nearly complete recoverability of the sorbent material during delithiation, this method presents a circular economy model. Furthermore, a life cycle analysis was conducted to illustrate the environmental advantages of replacing the conventional soda ash-based precipitation process with this method, along with a simple operational cost analysis to evaluate reagent and fuel expenses.

3.
J Am Chem Soc ; 145(26): 14387-14394, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37343135

RESUMO

Described in this work are calix[4]pyrrole-based ion-pair receptors, cis/trans-1 and cis/trans-2, designed for the extraction of sodium hydroxide. An X-ray diffraction analysis of a single crystal of the cis-1·NaOH isomer isolated from a mixture of cis/trans-1 revealed a unique dimeric supramolecular structure. An average dimer in toluene-d8 solution was inferred on the basis of diffusion-ordered spectroscopy (DOSY). Support for the proposed stoichiometry came from density functional theory (DFT) calculations. The structural stability of the dimeric cis-1·NaOH complex in toluene solution was further confirmed by ab initio molecular dynamics (AIMD) simulation with explicit representation of solvent. Under conditions of liquid-liquid extraction (LLE), purified receptors cis- and trans-2 were both found to remove NaOH from a pH 11.01 aqueous source phase into toluene with extraction efficiencies (E%) of 50-60% when used equimolar to NaOH. However, in all cases, precipitation was observed. Complexities associated with precipitation could be avoided by immobilization of the receptors onto a chemically inert poly(styrene) resin by means of solvent impregnation. The use of solvent-impregnated resins (SIRs) eliminated precipitation in solution while retaining the extraction efficiency toward NaOH. This allowed both the pH and salinity of the alkaline source phase to be lowered.

4.
Chemistry ; 28(26): e202201106, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35481687

RESUMO

Invited for the cover of this issue are Jeffrey Einkauf, Vyacheslav Bryantsev, Bruce Moyer, and Radu Custelcean from Oak Ridge National Laboratory. The image depicts an anion receptor functionalized with a new photoswitchable chromophore, the diiminoguanidinium group, with exceptionally strong sulfate-binding affinity that can be turned off by photoirradiation with UV light. Read the full text of the article at 10.1002/chem.202200719.

5.
Chemistry ; 28(26): e202200719, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319796

RESUMO

In a leap toward anion separation that uses only energy input for binding and release cycles, we report herein a new class of photoswitchable anion receptors featuring a diiminoguanidinium functionality that displays a change of more than five orders of magnitude in switched-off binding strength towards sulfate, a representative oxyanion, upon photoirradiation with UV light. The (E,E)-2-pyridyl-diiminoguanidinium cation, synthesized as the triflate salt, binds sulfate with extraordinary strength in [D6 ]DMSO owing to its bidentate guanidinium hydrogen bonding, which can chelate the O-S-O edge of sulfate. Upon photoisomerization to the Z,Z isomer, the anion-binding site is essentially shut off by intramolecular hydrogen bonds to the 2-pyridyl substituents, as shown by anion-binding titrations, theoretical calculations, and X-ray structural analysis. This approach will allow the development of advanced anion-separation cycles that use only energy input and generate no chemical waste, and thus address challenging chemical separation problems in a more sustainable way.


Assuntos
Sulfatos , Ânions/química , Sítios de Ligação , Cátions , Ligação de Hidrogênio , Sulfatos/química
6.
Inorg Chem ; 59(23): 17620-17630, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33186015

RESUMO

The separation of adjacent lanthanides continues to be a challenge worldwide because of the similar physical and chemical properties of these elements and a necessity to advance the use of clean-energy applications. Herein, a systematic structure-performance relationship approach toward understanding the effect of N-alkyl group characteristics in diglycolamides (DGAs) on the separation of lanthanides(III) from a hydrochloric acid medium is presented. In addition to the three most extensively studied DGA complexants [N,N,N',N'-tetra(n-octyl)diglycolamide, TODGA; N,N,N',N'-tetra(2-ethylhexyl)diglycolamide, TEHDGA; N,N'-dimethyl-N,N'-di(n-octyl)diglycolamide, DMDODGA], 12 new extracting agents with varying substitution patterns were designed to study the interplay of steric and electronic effects that control rare-earth element extraction. Subtle changes in the structure around diglycolamide carbonyl oxygen atoms result in dramatic shifts in the lanthanide extraction strength and selectivity. The effects of the chain length and branching position of N-alkyl substituents in DGAs are elaborated on with the use of experimental, computational, and solution-structure characterization techniques.

7.
Chemistry ; 26(63): 14290-14294, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32790908

RESUMO

Cooperativity effects among the interconnected anion and cation binding sites can profoundly alter the performance of heteroditopic receptors in selective ion pair recognition, processes that are oftentimes pertinent to biological systems and chemical separations. This work reports the effect of the linker that connects both binding sites on self-assembly of heteroditopic receptors in the presence of divalent first-row transition metal salts in solution and solid phase. Introduction of backbone flexibility in the receptor results in the formation of triple-stranded ion-pair helicates with an extraordinary selectivity towards CuSO4 through an anion-induced fit.

8.
ACS Appl Mater Interfaces ; 12(14): 16327-16341, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32180402

RESUMO

Ce-bastnäsite is the single largest mineral source for light rare-earth elements. In view of the growing industrial importance of rare-earth minerals, it is critical to develop more efficient methods for separating the valuable rare-earth-containing minerals from the surrounding gangue. In this work, we employ a combination of periodic density functional theory (DFT) and molecular mechanics (MM) calculations together with the de novo molecular design program HostDesigner to identify bis-phosphinate ligands that preferentially bind to the (100) Ce-bastnäsite surface rather than the (104) calcite surface. DFT calculations for a simple phosphinate ligand were employed to qualitatively understand key behaviors involved in ligand-metal, ligand-solvent, and solvent-metal interactions. These insights were then used to guide the search for flexible, rigid, and semirigid hydrocarbon linkers to identify candidate bis-phosphinate ligands with the potential to bind preferentially to Ce-bastnäsite. Among the five most promising bis-phosphinate ligands suggested by theoretical studies, three ligands were synthesized and their adsorption characteristics to bastnäsite (100) interfaces were characterized using vibrational sum-frequency (vSFG) spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and isothermal titration calorimetry (ITC). The efficacy of the selective interfacial molecular binding was demonstrated by identifying a bis-phosphinate ligand capable of providing an overall higher surface coverage of alkyl groups relative to a monophosphinate ligand. The results highlight the interplay between adsorption binding strength and maximum surface coverage in determining ligand efficiency to render the mineral surface hydrophobic. DFT calculations further indicate that all tested ligands have higher affinity for Ce-bastnäsite than for calcite. This is consistent with the ITC data showing stronger adsorption enthalpy to bastnäsite than to calcite, making these ligands promising candidates for selective flotation of Ce-bastnäsite.

9.
Chem Commun (Camb) ; 55(25): 3590-3593, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30758374

RESUMO

We introduce a new supramolecular strategy where an anion receptor modifies the selectivity ligands for cations. This is demonstrated by combining the classic anion receptor calix[4]pyrrole (C4P) and a phenolic ligand, which leads to remarkable enhancement in selectivity for Cs+ over Na+. Crystal structures and molecular simulations confirmed the persistent formation of ion-pair C4P-Cs+-phenolate complexes, while the smaller Na+ ion cannot efficiently interact.

10.
Chemistry ; 25(25): 6326-6331, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30803070

RESUMO

Due to the ever-increasing demand for high-purity individual rare-earth elements, novel and highly selective separation processes are increasingly sought after. Herein, we report a separation protocol that employs shape-persistent 2,9-bis-lactam-1,10-phenanthroline (BLPhen) ligands exhibiting unparalleled selectivity for light trivalent lanthanides. The highly preorganised binding pockets of the ligands allowed for the separation of lanthanides with high fidelity, even in the presence of competing transition metals, in a biphasic separation system. Notably, the selectivity trends of the BLPhen ligands towards metal ions across the lanthanide series can be chemically modulated by altering the molecular rigidity of the extractant.

11.
Environ Sci Technol ; 53(2): 878-883, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30351038

RESUMO

Ionic covalent organic frameworks make up an emerging class of functional materials in which the included ionic interfaces induce strong and attractive interactions with ionic species of the opposite charge. In this work, the strong and selective binding forces between the confined diiminoguanidinium groups in the framework and tetrahedral oxoanions have led to unparalleled effectiveness in the removal of the toxic chromium(VI) pollutant from aqueous solutions. The new functional framework can take up from 90 to 200 mg/g of chromium(VI), depending on the solution pH, and is capable of decreasing the chromium(VI) concentration in water from 1 ppm to 10 ppb within minutes (an order of magnitude below the current U.S. Environmental Protection Agency maximum contaminant level of 100 ppb), demonstrating superior properties among known ion exchange materials and natural sorbents.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Adsorção , Cromo , Guanidina , Concentração de Íons de Hidrogênio , Água
12.
RSC Adv ; 9(46): 26537-26541, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35528590

RESUMO

Efficient separation of minor actinides and lanthanides from used nuclear fuel could potentially lead to the development of sustainable nuclear fuel cycles. Herein, we report an in-depth study on selectivity and speciation in the extraction of the trivalent minor actinide Am and rare earth metal ions with a pre-organized phenanthroline-based ligand in a hydrocarbon solvent system relevant to nuclear fuel reprocessing. The 1 : 1 and 2 : 1 ligand-to-metal complexes dominate the speciation in the organic solvent over a range of ligand-to-metal concentrations, as evidenced by experimental data and supported by modeling.

13.
Chem Commun (Camb) ; 54(72): 10048-10051, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30124224

RESUMO

We report a novel di(imino)guanidinium anion extractant with unparalleled selectivity for sulfate in a liquid-liquid separation system. In addition to a 4.4 order-of-magnitude enhancement in affinity compared to a standard benchmark, our alkylated di(imino)guanidinium receptor is economically synthesized and features good compatibility with application-relevant aliphatic solvents. Small-angle X-ray scattering results reveal the formation of reverse-micelles, which together with the significant organic-phase water content challenge traditional notions of selectivity in extraction of superhydrophilic anions.

14.
ACS Cent Sci ; 4(6): 739-747, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29974069

RESUMO

Fundamental understanding of the selective recognition and separation of f-block metal ions by chelating agents is of crucial importance for advancing sustainable energy systems. Current investigations in this area are mostly focused on the study of inner-sphere interactions between metal ions and donor groups of ligands, while the effects on the selectivity resulting from molecular interactions in the outer-sphere region have been largely overlooked. Herein, we explore the fundamental origins of the selectivity of the solvating extractant N,N,N',N'-tetraoctyl diglycolamide (TODGA) for adjacent lanthanides in a liquid-liquid extraction system, which is of relevance to nuclear fuel reprocessing and rare-earth refining technologies. Complementary investigations integrating distribution studies, quantum mechanical calculations, and classical molecular dynamics simulations establish a relationship between coextracted water and lanthanide extraction by TODGA across the series, pointing to the importance of the hydrogen-bonding interactions between outer-sphere nitrate ions and water clusters in a nonpolar environment. Our findings have significant implications for the design of novel efficient separation systems and processes, emphasizing the importance of tuning both inner- and outer-sphere interactions to obtain total control over selectivity in the biphasic extraction of lanthanides.

15.
Angew Chem Int Ed Engl ; 57(37): 11924-11928, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-29800493

RESUMO

LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (that is, used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Herein, we describe two ditopic calix[4]pyrrole-based ion-pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl/KCl salt mixture containing as little as 1 % LiCl with circa 100 % selectivity, while receptor 3 achieved similar separations when the LiCl level was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl>NaCl>LiCl. In contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.

16.
Environ Sci Technol ; 51(22): 13481-13486, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29076733

RESUMO

We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.


Assuntos
Hidróxido de Alumínio , Lítio , Alumínio , Cloreto de Lítio , Sais
17.
J Am Chem Soc ; 139(48): 17350-17358, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29083173

RESUMO

Outer-sphere ion clusters are inferred in many important natural and technological processes, but their mechanisms of assembly and solution structures are difficult to define. Here, we characterize trefoil-shaped outer-sphere lanthanide chloride and nitrate ion clusters in hydrocarbon solutions formed during liquid-liquid extraction with diglycolamide ligands. These are assembled through steric and electrostatic forces, where the anions reside in equidistant "clefts" between coordinating diglycolamide ligands in positions that satisfy both repulsive and attractive ion-ion interactions. Our study shows how sterically directed electrostatic interactions may assemble stable outer-sphere ion clusters in organic solutions, elucidating new strategies for controlling ion cluster assembly and extraction.

18.
Chem Commun (Camb) ; 53(41): 5610-5613, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28484775

RESUMO

The role of solvent in molecular recognition systems is under-researched and often ignored, especially when the solvent is considered "non-interacting". This study concerns the role of toluene solvent in cesium(i) recognition by calix[4]pyrrole. We show that π-donor interactions bind toluene molecules onto the open face of the cation-receptor complex, thus "capping the calix." By characterizing this unusual aromatically-saturated complex, we show how "non-interacting" aromatic solvents can directly coordinate receptor-bound cations and thus influence recognition.

19.
Inorg Chem ; 56(10): 5911-5917, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28471188

RESUMO

We report a new family of preorganized bis-lactam-1,10-phenanthroline (BLPhen) complexants that possess both hard and soft donor atoms within a convergent cavity and show unprecedented extraction strength for the trivalent f-block metal ions. BLPhen ligands with saturated and unsaturated δ-lactam rings have notable differences in their affinity and selectivity for Am(III) over Eu(III), with the latter being the most selective mixed N,O-donor extractant of Am(III) reported to date. Saturated BLPhen was crystallized with five Ln(III) nitrates to form charge-neutral 1:1 complexes in the solid state. DFT calculations further elaborate on the variety of effects that dictate the performance of these preorganized compounds.

20.
Inorg Chem ; 56(3): 1152-1160, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28161941

RESUMO

The subtle energetic differences underpinning adjacent lanthanide discrimination are explored with diglycolamide ligands. Our approach converges liquid-liquid extraction experiments with solution-phase X-ray absorption spectroscopy (XAS) and density functional theory (DFT) simulations, spanning the lanthanide series. The homoleptic [(DGA)3Ln]3+ complex was confirmed in the organic extractive solution by XAS, and this was modeled using DFT. An interplay between steric strain and coordination energies apparently gives rise to a nonlinear trend in discriminatory lanthanide ion complexation across the series. Our results highlight the importance of optimizing chelate molecular geometry to account for both coordination interactions and strain energies when designing new ligands for efficient adjacent lanthanide separation for rare-earth refining.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...